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Abstract 

 

Despite their practical importance, prediction intervals have received little attention in texts on statistics, 

quality control, and reliability analysis as well as in life testing experiments, except in relation to regression 
analysis. In this paper, an attempt has been made to provide a comprehensive presentation of important 

prediction intervals and to provide numerical examples of their application in the context of reliability. It is 

well regarded that the Weibull distribution is a life testing distribution and a widely known distribution in 
reliability and survival analysis. Nevertheless, exponential distribution is a special case of the Weibull, the 

case which corresponds to constant failure rate. The purpose of this paper is to discuss parametric prediction 

intervals for reliability when the form of the distribution is exponential or Weibull. The study would cover 
some of the important prediction intervals with relevant examples. 

 

1. Introduction 

 
In reliability and life testing experiments, prediction intervals, which use the results of a past sample, 

provide useful information about the realization of a random variable in a future sample from the same 

distribution. That is, a prediction interval is an interval which uses the results of a past sample to contain 

the results of a future sample from the same population with a specified probability that serves different 

purposes. For example, one might wish to predict the number of product failures which will occur in a 

future period using past data. 

  

Suppose X1,X2,...,Xn denote an ordered random sample of size n drawn from a population of size (n+k), 

say, X1, X2,...,Xn, Xn+1, Xn+2,...,Xn+k. Now, if we consider a second (future) sample of size k, Xn+1, 

Xn+2,...,Xn+k from the same population where our interest is to make a probability statement for the future 

sample based on the information of the past sample. A prediction interval, in contrast to a confidence 

interval or tolerance interval, could be applicable in such a situation. It is common practice to compute a 

confidence interval for the population parameter such as for population mean. Sometimes a confidence 

interval is desired for a future observation itself, rather than its mean. In this case the confidence interval 

must be somewhat wider to allow for the variation of the variable itself about its mean. Since the interval 

is for a variable, rather than a parameter, it is sometimes referred to as a prediction interval, instead of a 

confidence interval. Furthermore, a p-level prediction interval for future observation; may also be 

                                                 
*
 Corresponding author: hannan.chowdhury@northsouth.edu 

© Department of Statistics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh. 



JUJSS Chowdhury 

64 

interpreted as a p-expectation tolerance interval. A prediction interval can easily be distinguished from a 

confidence interval for an unknown population parameter (such as the population mean) and a tolerance 

interval to contain a specified proportion of the population. For further details about confidence interval, 

tolerance interval and prediction interval consult Hahn [1970, 1972]. The main goal of the study is to 

demonstrate parametric prediction intervals for reliability when the form of the distribution is either 

exponential or Weibull. This study would provide a wide-ranging presentation of important prediction 

intervals with relevant examples in the context of reliability. 

 

2. Review of Literature 

 

One of the earliest papers on prediction intervals is Baker (1935). Since then, a large number of papers 

on prediction intervals have appeared in the literature. An early review paper on the subject is Hahn & 

Nelson (1973). A comprehensive review paper by Patel [1989] describes the availability of a large 

variety of prediction intervals for several life distributions. In the literature, a variety of prediction 

intervals is available for normal and exponential distributions. For the exponential distribution alone, we 

figured out prediction intervals by Hahn (1975), Kaminsky (1977), Kaminsky & Nelson (1974), Lawless 

(1971, 1972, 1977), Hahn & Meeker (1991), Nelson (1970), and others are prominent. For many of these 

prediction intervals, factors for calculating prediction limits are generally tabulated. However, there are 

some important prediction intervals for which no such tabled values are available. One of the pioneer 

papers on prediction intervals for a such case based on one parameter exponential distribution obtained 

by Lawless (1971). Since then, this model has been investigated extensively, and several prediction 

intervals covering diverse situations are now available for it. 

 

In different kinds of literature, parametric and non-parametric prediction intervals have been discussed 

extensively by many authors. Parametric prediction intervals are intervals obtained when the form of the 

population is known such as normal, exponential and are discussed in papers written by Chew (1969), 

Hahn (1970), Hahn & Nelson (1973), Hall & Prairie (1973) and Hall, Prairie & Motlagh (1975). On the 

other hand, non-parametric prediction intervals are intervals obtained when the form of the distribution 

is unknown and these are discussed in papers written by Danzinger & Davis (1964), Lawless (1971), and 

Nelson (1963). But, not too many papers have discussed prediction intervals in the context of reliability.  

Hsieh (1997) computed quantiles related to prediction intervals for future Weibull order statistics using a 

conditional method for two scenarios: (i) if only previous independent failure data are available, and (ii) 

if both previous independent failure data and early-failure data in ongoing experiment are available. 

Note that quantiles for constructing prediction intervals depend on ancillary statistics of observed data 

while using the conditional method. Hsieh (1996) utilized the identical method to get prediction intervals 

for future observations, based on only early-failure data of a current experiment. Hsieh (1997) extended 

the prediction problem to the case of using both previous independent data and early-failure data of the 
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ongoing experiment. Comparisons have been made for interval widths of different parameter estimators 

forming prediction intervals in different ways. 

 

Jiang & Zhang (2002) considered prediction intervals for a future observation in the context of mixed 

linear models assuming that the future observation is independent of the current ones using a 

distribution-free method. They showed that for standard mixed linear models, a simple method based on 

the (regression) residuals works well for constructing prediction intervals. Hahn & Meeker (1991) 

reviewed and compared three types of statistical intervals as the confidence interval, the prediction 

interval, and the tolerance interval. Note that distribution-free methods play a more significant role in 

prediction intervals than they do in confidence intervals, especially for large samples. Wu (2015) 

suggested the general weighted moments’ estimators (GWMEs) of the scale parameter of one-parameter 

exponential distribution based on a multiply type II censored sample to construct the prediction intervals 

for future observations. Nevertheless, Wu (2016) proposed the prediction interval for future waiting 

times or inter-arrival time to demonstrate the prediction intervals based on GWMEs. Here, the objective 

was to investigate the utilization of GWMEs in constructing a pivotal quantity and to find out the 

prediction interval of future waiting times or inter-arrival times between the two consecutive future 

observations.  

 

However, one of the major objectives of this study is to provide a comprehensive presentation of 

important parametric prediction intervals and to provide numerical examples of their application in the 

context of reliability when the form of the distribution is exponential or Weibull. Since the natural 

logarithm of a variable with a Weibull distribution has an extreme value distribution. Therefore, 

prediction intervals for the Weibull distribution found under this study may also be used for the extreme 

value distribution. This was discussed by Mann & Saunders (1969) and Antle & Rademacher (1972). 

 

3. Prediction Interval 

 
Suppose in a situation in which a sample of size n, X1, X2,...,Xn is taken from the population under 

consideration with unknown parameters and also suppose that a second (future) sample of size k, Xn+1, 

Xn+2,...,Xn+k is taken  from  the same population. Now let us suppose that g(Xn+1, Xn+2,...,Xn+k) be some 

statistic (function of the observations) for the second sample of size k and g1(X1, X2,...,Xn), g2(X1, 

X2,...,Xn) which are the functions of the first sample of size n. Thus, a two-sided 100 % prediction 

interval to contain the future statistic g(Xn+1, Xn+2,...,Xn+k) with probability  (specified) is an interval 

with lower and upper limit g1(X1, X2,...,Xn) and g2(X1, X2,...,Xn) which are the functions of the 

observations in the first sample, such that the interval encloses the future statistic with probability , that 

is, 

P[g1(X1, X2,...,Xn) < g(Xn+1, Xn+2,...,Xn+k) < g2(X1, X2,...,Xn)] =  (1) 
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for any possible values of the unknown parameters of the underlying distribution. However, the 

interpretations of such prediction intervals are as follows: Suppose a 100% prediction interval for a 

future sample statistic is calculated from past samples for many such pairs of past and future samples. 

Then the interval will enclose the future sample statistic in a fraction  of the pairs of samples in the long 

run. That is, such intervals enclose the corresponding future statistic with probability . 

 

4. Simultaneous Prediction Interval  

 

Simultaneous prediction intervals may be defined for k statistics, gl, g2...,gk, each a separate function of 

the observations in k independent future samples from the same distribution as a first sample X1,...,Xn. 

Two-sided simultaneous prediction intervals to contain gl, g2....,gk,  with probability  are intervals with 

lower and upper endpoints gi1(X1,...,Xn) and gi2(X1,..., Xn),     i = l,..., k, which are functions of the 

observations in the first sample, such that the intervals each enclose the corresponding future statistics 

with probability ; that is, 

 

P[g11   g1   gl2, and · · · and gkL   gk    gk2 ] =  (2) 

 

for any possible values of the unknown parameters of the underlying distribution. One-sided 

simultaneous prediction intervals are similarly defined. However, such simultaneous prediction intervals 

have the following interpretation: Suppose for many sets of a single past sample and k future samples, 

100% simultaneous prediction intervals are calculated for sample statistics for each of k future samples. 

Then all of the k intervals will enclose their respective sample statistics in a fraction  of the sets of 

samples in the long run. That is, such intervals enclose all of the corresponding future statistics with 

probability · 

 

5. Problem Statement 

 

Reliability studies and life testing experiments mostly deals problem-related to failure data. Let us 

suppose that in an experiment some prior failure information is given and one would like to obtain 

information on the next failure times or to predict the range of the future failure times. Assume that the 

failure times of a system that occurs from an exponential or from a single Weibull process and the 

successive failure times x1, x2,....,xn have been recorded. The vital question is that we are concerned 

about the next failure occur time. In this situation, prediction intervals in contrast to confidence or 

tolerance intervals are appropriate. That means, a prediction interval for future failure time xn+1, 

xn+2,....,xn+k (in general), would be quite applicable. This implies that we may use the result of a past 

sample to construct an interval that will contain the results of a future sample from the same population 

with a specified probability. Throughout it is assumed that both the past and the future samples are 
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obtained with simple random sampling from the same population. The validity of prediction intervals 

depends strongly on this key assumption. 

 

6. Prediction Interval When Lifetime Follows One Parameter Exponential Distribution 

 

Suppose, in a life testing experiment involving items whose life time’s follow an exponential distribution 

and our problem is to predict the rth ordered observation Xr in a sample of n from the same distribution, 

based on the observed values of the first k ordered observations from the sample (k < r   n). Now, 

suppose that X1   X2  .....   Xn are ordered observations in a sample of n from the exponential with 

mean 1/, having density,  

 

f(x; ) = e
-x

,              > 0, x > 0 (3) 

 

Let Sk = Xi +(n-k)Xk and the variate u = u(k,r,n) for given k < r   n and u is defined by 

   

 u = (Xr - Xk)/Sk. 

 

While deriving density function of u we note two well-known results (see Epstein and Sobel, 1953) 

concerning ordered observations from an exponential distribution:  

 

 (i) the variates w1 = nX1, wi = (n-i+1)(Xi - Xi-l), i = 2,...,n are independently distributed with 

density (3), and (ii) 2Sk = 2wi is distributed as 
2
 with 2k degrees of freedom.  

 

It then follows rather easily that (Xr - Xk) and Sk are independently distributed and that u = (Xr - 

Xk)/Sk has a distribution not involving . The probability density function of u is found as  

 

f(u) = k/B(r-k,n-r+1) ( )r k
i

r k

 


 

 1
0

1

(-1)
i
[1 + (n-r+i+1)u]

-k-1
 ;     (u > 0)      (4) 

where , B(a, b) =(a-1)! (b-1)!/(a+b-1)! when a, b are positive integers. Integration yields 

P(u   t) = k/B(r-k,n-r+1)[ ( )r k
i

r k

 


 

 1
0

1

(-1)
i
/(n-r-+i+1)][1 + (n-r+i+1)t]

-k
  (u > 0) 

            

 i = P(t; k,r,n) (5) 

 

when the distribution function of u is given by F(t) = 1 - P(u   t). 

 

However, probability statements about u provide prediction statements on Xr, on the basis of observed 

Xk, Sk,. For example, the statement P(u   to) =  yields prediction statement, 

 

             P(Xr,   Xk + toSk) = , (6) 
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giving a (one-sided) 100% prediction interval for Xr. 

 

However, two additional remarks concerning the evaluation of the above probabilities: 

 

(i) In the important case where r = n (that is, we wish to predict the largest observation on the basis of 

the k smallest), expression (5) can be expressed as 

 

P(t; k,r,n) =  1 - ( )n k
i

n k







0

(-1)
i
[1+it]

-k
      (7) 

 

hence, the distribution function of u1 = u(k, n, n) is given by 

        

P(u1   t) = ( )n k
i

n k







0

(-1)
i
[1+it]

-k
       (8) 

 

(ii) In the special case where k = r-1, Epstein and Sobel's (1953) results, u2= u(r-1, r, n) = (r-1)(n-

r+1)(Xr-Xr-1)/Sr-1 is an F variate with (2, 2r-2) degrees of freedom, so that appropriate probability 

statements can be read from standard tables of the F distribution. 

 

Case 1: A Life Test where All Units Are Observed Until Failure: 

 

Consider a life test with n units and whose lifetimes follow the same exponential distribution, are put on 

test simultaneously, and where all units are observed until failure. We can provide a prediction interval 

for the largest lifetime Xn on the basis of the k smallest lifetimes X1 < X2 < ··< Xk; Xn is in this case the 

total elapsed time required to complete the test. 

 

Numerical Example 1 

 

Suppose that 10 items, whose lifetimes are distributed according to the same exponential distribution, are 

on test simultaneously, and that the first four items to fail to do so at times 30, 90, 120, 170 hours. For n 

= 10, k = 4 we can find P(u1   2.10) is very nearly 95%. Since X4 = 170 and S4 =1430, this yields the 

prediction statement P(X10   170 + (2.10) 1430) = P(X10   3173) = .95. That is, we can be 

(approximately) 95% confident that the total elapsed test time will not exceed 3173 hours. 

 

Case 2: A Life Test Where Testing Is Terminated After the rth Failure: 

 

Consider a life testing situation similar to that in the above section, but suppose that it had been decided 

beforehand to terminate the test after the fifth failure. 
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Numerical Example 2 

 

On the basis of the first four failure times, we can compute, say, an upper 95% prediction limit for X5. 

With r = 5, k = 4, n = 10, we consider u = (Xr - Xk)/Sk; using equation (5) or noting that in this case 24u 

is an F variate with (2, 8) degrees of freedom, we find that P(u   .1858) = .95. Given the observed 

values X4 = 170, S4 = 1430, this yields the prediction statement 

 

P(X5   436) = .95. 

 

We can be 95% confident that the fifth failure will occur before 436 hours. 

 

7.  Prediction Interval Based on Ranges when Lifetimes Follows Two Parameter Exponential 

Distribution. 

 
Let Ro(n) be the sample range of the lifetimes when n items are put on a life test (without replacement). 

Similarly, let Rf(k) be the future s-independent sample range of the lifetimes when k items are put on a 

similar life test. Then the first prediction interval that we have obtained could be used to predict Rf(k) on 

the basis of the observed Ro(n). 

 

Let, the lifetimes of all items follows a two-parameter exponential distribution, then the two parameter 

exponential distribution is: 

 

 f(x; , ) = (1/  )exp[(x-)/], for all  x  .          (9) 

 

If  is known, the distribution becomes, effectively, the one-parameter exponential. Here,  = scale 

parameter (unknown),  = location parameter (known or unknown), and (X1 < X2<......<Xn), (Xn+1 

<Xn+2<.....<Xn+k) = ordered failure times from two s-independent samples. Since, Ro(n), Rf(k) = ranges of 

past and future samples respectively, where, Ro(n) = Xn -X1, and Rf(k) = Xn+k - Xn+1.  

 

Also (X
*
1 < X

*
2<......<X

*
n ), (X

*
n+1 <X

*
n+2<......<X

*
n+k)  = ordered standardized r.v.'s from two s-

independent samples from exponential distribution and Ro*(n), Rf*(k) = standardized sample ranges past 

and future samples respectively. Moreover, 1- = prediction probability. 

 

Now, consider the ratio of two independent ranges, V = Rf(k)/Ro(n) = Rf*(k)/Ro*(n). The probability 

distribution of the r.v. Here, V, does not depend on any parameter(s).The Cdf Hf(Xj) of the r.v. Rf*(k) is 

known [see David, 1981, p 12]: 

 

 Hf(Xj) = (1-e
-xj

)
k-1

, for  Xj  0. Similarly, cdf  

 

 Ho(Xi) = (1- e
-xj

)
n-1

, for Xi  0. 
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Now consider P (V   v) = P[Rf*(k)   v Ro*(n)] (using binomial theorem, see Colangelo and Patel, 

1972). 

 

Let v = v(;m,n) be the  lower quantile for the Cdf(K).  

 

Then, P{v1   Rf(k)/Ro(n)   v1-2}= l-     (10) 

 

with 0 < 1 < 1, 0 < 2 < 1 and 1 + 2 = . The (1-) two-sided prediction interval of the future sample 

range Rf(k) on the basis of the past sample range Ro(n) is: 

 

 [v1 Ro(n),  v1-2 Ro(n)].    (11) 

 

Similarly, (1- ) one-sided prediction intervals of the future sample ranges Rf(k) are: 

 

 lower prediction limits for Rf(k) is: [vRo(n),  ], 

 

 and upper prediction limits for Rf(k) is:  [O, v1-2Ro(n)] 

 

For computation of prediction factors consult Colangelo and Patel (1972). 

 

Numerical Example 3 

 

In an accelerated life test, consider the following failure times (in weeks) of 10 transistors having a 2-

parameter exponential life distribution: 7, 9, 9, 10, 13, 14, 16, 17, 19, 25. One would like to predict the 

range of the failure times of a future such test of 15 transistors using a 90% prediction interval.  

 

Then, for n = 10, Ro (10) = 25-7 = 18, k = 15, and the equal-tail case of 1 = 2 = 0.05, we find vo.o5 = 

0.464797 and vo.95 = 3.01029 from table 1 of Colangelo and Patel, (1972). This provides a 90% two-

sided prediction interval for Rf (15) as: [0.464797·18, 3.01029·18] = [8.37, 54.19]. 

 

Similarly, 90% one-sided lower and upper prediction intervals for future sample ranges are:  

 

 lower prediction intervals: [0.569004·18, 90) = [10.24, )  

 

 and upper prediction intervals is: [0,2.43540·18] = [0,43.84]. 

 

8. Prediction Interval Based on Waiting Time when Lifetime follows Two Parameter Exponential 

Distribution: 

 
Let W(i) be the waiting time between failures (i-1) and i when n items are put on a life test (without 

replacement), (i= 1,2,...,n). Now, we want to obtain a prediction interval which can be used to predict the 

future waiting time W(s) on the basis of the observed (past) waiting time W(r),(1   r < s   n). 
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Let, W(i) = waiting time between failures (i-1) and i: W(i) = Xi - Xi-1, i=1,2,....n and w*(i) = standardized 

waiting time between failures (i-1) and i: w*(i) = Xi - Xi-1, i=1,2,....n, also 1- = prediction probability. 

Let us consider the ratio, 

 

F= (n-s+l)W(s)/(n-r+l)W(r) = 2(n-s+l)W*(s)/2(n-r+l)W*(r); (1   r <s   n).    (12) 

 

The (n-s+l)W*(s) is s-independent of (n-r+ I)W*(r), and both have the two-parameter exponential 

distribution [see David, 1981]. The random variable F has an F-distribution with 2 degrees of freedom in 

both numerator and denominator. Let f = f(;2,2) be its  lower quantile: P(F   f) = . Since 

 

P{f1    (n-s+l)W(s)/(n-r+l)W(r)   f1-2}= l-     (13) 

 

with 1+2 =   defined as in previous section, we have a (l- ) two-sided prediction interval of a future 

waiting time W(s) on the basis of the past waiting time W(r): 

 

 [cW(r)f1, cW(r) f1-2]    (14) 

 

where, c =(n-r+l)/(n-s+l). Similarly (l- ) one-sided lower and upper prediction limits W(s) are: 

  

 [cW(r)f1, ) and [0, cW(r) f1-2]    (15) 

 

Since f = f(;2,2) can be found from the F-distribution tables. It should be mentioned that necessary 

prediction factors can be obtained from known tables and to get these prediction factors see Colangelo 

and Patel, (1972). 

 

Numerical Example 4 

 

In an accelerated life test, let 15 transistors be put on the test (with replacement) and let failure times 

have a two-parameter Exponential distribution. Let the failure times for transistors #4 and #5, be 10 and 

13 weeks, respectively. One would like to find a 90% prediction interval for the waiting time between 

future failures #9 and #10. 

 

Here n =15, r = 5, W (5) =13-10 =3, s = 10; and f0.90 = f(0.90; 2, 2) = 9.0. This provides a 90% one-sided 

upper prediction limit of: (15-5+1 / 15-10+1) 3 · 9 = 49.5. 

 

9. Prediction Intervals when Lifetimes Follows Weibull Distribution 

 

The procedures for obtaining prediction intervals for a future sample from an exponential distribution 

can be readily extended to obtain prediction intervals for a sample from a Weibull distribution with a 

known value of the shape parameter. Mann and Saunders (1969) provided one-sided lower prediction 

limits for the smallest value in a future sample when samples are taken from a Weibull distribution. They 
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used such a limit as the warranty time for the life of a product. Mann (1970) extended tabulations for 

such a prediction limit based on a linear combination of three selected order statistics from the first 

sample. 

Suppose the lifetimes of all items follow a three parameter Weibull distribution, then  

 

fx(x) = /[(x-n)/] 
-1

 exp[-(x-n)/)

].                                 (16) 

 

The parameters ,  and n are referred to as shape, scale and location parameters respectively. This can 

also be expressed as X  W (, , n). Consider a single Weibull process such as the failure times of a 

system, and suppose the successive failure times x1,...,xn have been recorded.  Perhaps the most natural 

question concerns when the next failure will occur.  This suggested that a prediction interval for xn+1, or 

more generally for xn+m would be quite useful and meaningful in this framework. A prediction interval is 

a confidence interval for a future observation. Thus a  level lower prediction limit for xn+m is a statistic 

TL (n, m, y) such that P [TL (n, m, y)   xn+m] = . 

 

Consider first the case m = 1. The limit TL should be a function of the sufficient statistics and the 

probability must be free of parameters. 

 

Theorem: Suppose Xn ,...,Xn+1 denote the first n+1 successive times of occurrence of a Weibull process, 

and suppose the observed values x1, ... xn  are available.  Then, a lower  level prediction limit for Xn+1 is 

TL (n, 1, ) = xn   exp[(-1/(n-1)
 -1)/] (see Bain and Engelhardt, 1991). 

 

Numerical Example 5  
 

Crow (1974) provided the following simulated data for k = 3 systems with true common  = 0.5 and 

common  = 2.778. The data are actually obtained using time truncation at time 200, but for illustrative 

purposes suppose failure truncation had been employed. 

 

System 1:  

4.3, 4.4, 10.2, 23.5, 23.8, 26.4, 74.0, 77.1, 92.1, 197.2 

 

System 2:  

0.1, 5.6, 18.6, 19.5, 24.2, 26.7, 45.1, 45.8, 75.7, 79.7, 98.6, 120.1, 161.8, 180.6, 190.8 

 

System 3:  

8.4, 32.5, 44.7, 48.4, 50.6, 73.6, 98.7, 112.2, 129.8, 136.0, 195.8  

  

Now, consider the system 1 data. A lower 90% predicted failure time will be  

 

 TL (10, 1, 0.90) = 197.2   exp [(0.90
-1/9

 -1) / 0.51] = 201.8 
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10.  Prediction Intervals of Waiting Time with GWME of the Scale Parameter of the One-

Parameter Exponential Distribution 

 
To predict the waiting time, the pivotal quantity is measured as V = (Y(j)−Y(j−1))/ˆθ, n−s < j ≤ n based on 

the GWME ˆθ of the scale parameter of the one-parameter exponential distribution where the lifetimes Y 

with pdf given by f(y) = 1/θ exp (− y/ θ ), y ≥ 0, θ > 0.  

 

Suppose that Y(r+1) < …. < Y(r+k) < Y(r+k+l+1) < …. < Y(n−s) be the available multiply type II censored 

sample from the above distribution. The GWME to estimate the scale parameter θ is defined as  

 

ˆθ = Wr+1Y(r+1) + … + Wr+kY(r+k)+Wr+k+l+1Y(r+k+l+1)+. . .+Wn−sY(n−s) = W∼
T
Y∼,  

 

where W∼ = [Wr+1,… ,Wr+k ,Wr+k+l+1, . .,W n−s]
T
 and Y∼ = [Y(r+1) , …. , Y(r+k),Y(r+k+l+1),. ,Y(n−s)) ]

T
.  

 

The weights W∼ are determined so that the MSE of the proposed GWME is minimized and the GWME 

with minimum MSE is obtained as θ = W∼
T
Y∼. 

 

Since Y(1)/θ , …., Y(n)/θ are the n order statistics from a standard exponential distribution and θˆ/θ = 

W∼
T
/Y∼θ is a linear combination of n order statistics from a standard exponential distribution, the 

distribution of pivotal quantity V = (Y(j)−Y(j−1)/θ) /θˆ/θ is independent of θ, n − s < j ≤ n.  

 

Let V (δ; n, j, r, k, l, s) be the δ percentile of the distribution of V satisfying P(V ≤ V (δ; n, j, r, k, l, s)) = 

δ. Make use of the pivotal quantity, and the prediction interval of waiting time Y(j)−Y(j−1), n − s < j ≤ n is 

proposed in the following theorem. 

 

Theorem:  For multiply type II censored sample Y(r+1) < …. < Y(r+k) < Y(r+k+l+1) < …. < Y(n−s), the 

prediction interval of waiting time Y(j)−Y(j−1), n − s < j ≤ n is (V (α/2 ; n, j, r, k, l, s)ˆθ, V (1–α/2; n, j, r, k, 

l, s)ˆθ) (for further details see Wu 2016). 

 

Numerical Example 6 

 

Suppose that the time to breakdown of an insulating fluid between electrodes is assumed to be 

exponentially distributed and recorded at 5 different voltages [6]. To illustrate the prediction interval of 

waiting time assuming 35 kV, the data with n = 12, r = 2, k = 3, l = 1 and s = 5 and the multiply type-II 

censored failure times (seconds) are: –, –, 41, 87, 93, –, 116, –, –, –, –, –. The weights are 0.23568, 

0.12544, 0.19776, and 0.8058.  

 

Here, the estimated scale parameter is ˆθ = W(3)Y(3) + W(4)Y(4) + W(5)Y(5) + W(7)Y(7)  

= 41 ∗ 0.23568 + 87 ∗ 0.12544 + 93 ∗ 0.19776 + 116 ∗ 0.8058 = 132.4406.  
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We  obtained 95% prediction intervals for future waiting times Y(8) − Y(7), Y(9) − Y(8), Y(10) − Y(9), Y(11) − 

Y(10), and Y(12) − Y(11) are obtained for V (0.025; 12, j, 2, 3, 1, 5), V (0.975; 12, j, 2, 3, 1, 5) corresponds 

to [0.0058 & 1.1098] with prediction interval is (0.76816, 146.9826); [0.0073 & 1.3875] with prediction 

interval is (0.9668, 183.7613); [0.0098 & 1.8605] with prediction interval is (1.2979, 246.4057); [0.0146 

& 2.7797] with prediction interval is (1.9336, 368.1451); and [0.0292 & 5.5634] with prediction interval 

is (3.8673, 736.8200), (See for details Wu 2016). 

 

11. Concluding Remarks 

 

For a single future observation, a prediction interval is an interval that will contain a future observation 

from a population with a specified coverage probability. Many practical problems require that a past 

sample be used to construct a prediction interval to contain the results of a future sample. In this paper, 

the author presented most of the available prediction intervals for life testing experiments especially 

when the lifetimes follow exponential or Weibull distribution, and illustrated their use to provide a guide 

to those who require such methods in practical applications. Since the natural logarithm of a variable 

with a Weibull distribution has an extreme value distribution. Therefore, prediction intervals for the 

Weibull distribution found under this study may also be used for the extreme value distribution.  
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