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Abstract

Groundwater is an essential resource in Bangladesh, supporting both domestic consumption and
agriculture. Rapid urbanization, industrialization, and geomorphological changes have led to a
significant depletion of groundwater levels, particularly in areas like Savar Upazila. This study
integrates spatial interpolation and machine learning approaches to assess and predict groundwater
level fluctuations in Savar. Kriging, a geostatistical interpolation technique, was applied using
groundwater data from five boreholes to map spatial distributions and identify zones of depletion.
Results showed deeper groundwater levels in industrial zones such as Ashulia and Baipyle, whereas
agricultural regions like Dhamrai exhibited shallower levels, likely due to greater groundwater
recharge through wetlands. To forecast groundwater dynamics, a Long Short-Term Memory (LSTM)
neural network model was developed using meteorological inputs (rainfall, evaporation, and runoff)
alongside historical groundwater data. The model achieved high accuracy, with average training and
validation losses of 0.013 and 0.010, respectively. Results from the five boreholes demonstrated the
LSTM model’s ability to effectively learn temporal patterns and predict groundwater levels with
minimal error. This highlights the value of combining remote sensing, geostatistics, and deep learning
for water resource management. The study emphasizes the importance of continuous groundwater
monitoring, especially in rapidly developing urban-industrial landscapes. The integration of Kriging
and LSTM modeling provides a robust framework for assessing and forecasting groundwater
dynamics, offering valuable insights for sustainable water resource planning and climate adaptation
strategies in Bangladesh and similar contexts.
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Introduction

Groundwater is an essential element of the global hydrological cycle, functioning as a natural
reservoir that accumulates and discharges water over time. Comprehending the dynamics of
groundwater levels is crucial for sustainable water management, since it directly affects the
availability of water for human consumption, agriculture, and ecosystem vitality. Globally,
99% of freshwater is derived from groundwater (Programme, 2022). In Bangladesh,
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groundwater sources are critically significant for drinking water supply and the agricultural
industry. Ninety-seven percent of drinking water is derived from groundwater, and
agricultural activities during the dry season mostly rely on this groundwater supply
(Shamsudduha, 2013). Geomorphologically, Bangladesh possesses a substantial reserve of
aquifers from which groundwater can be readily collected throughout the year. The
availability of groundwater sources, excessive extraction, and alteration of the natural
landscape, which diminishes groundwater recharge points, ultimately leads to the depletion of
groundwater levels (Islam and Mostafa, 2021). This poses a significant problem for human
activities and the natural environment (Bierkens & Wada, 2019).

Traditionally, groundwater monitoring depended on sparse and localised well networks,
frequently leading to restricted regional coverage and temporal resolution (Gibbons et al.,
2009). Historically, they depended on local well networks and hand measurements (Bhatti et
al., 2017; Einarson & Cherry, 2002; Quevauviller et al., 2009). Conventional approaches are
resource-demanding, time-intensive, and may inadequately encompass the intricate dynamics
of aquifer systems. This has resulted in heightened interest in incorporating technologies and
methodologies to improve the spatial and temporal scope of groundwater level evaluations.
Technological advancements, especially in remote sensing and modelling techniques, have
transformed our capacity to evaluate and forecast groundwater levels on a larger scale
(Alshehri et al., 2020; Brunner et al., 2007; Khaki et al., 2016; Usman et al., 2020; Xu et al.,
2020). In regions such as Bangladesh, where effective management and advanced
technologies are scarce, this methodology can be advantageous. This study intended to
investigate the integration of remote sensing and modelling approaches for assessing and
predicting groundwater levels to evaluate their relevance, applicability, and suitability for
successful water resource management.

Spatial interpolation (Kriging)

The origins of Kriging can be attributed to the groundbreaking contributions of French
mathematician Georges Matheron in the 1950s. Kriging, a geostatistical interpolation
technique, has developed and gained extensive use across various domains like geology,
hydrology, environmental science, and agriculture. Its prominence in groundwater level
evaluation stems from its capacity to integrate the geographical configuration of the data,
yielding solid estimates and dependable uncertainty assessments. Kriging fundamentally
relies on the notion of regionalised variables, utilising the spatial correlation among sample
points to estimate values at unobserved places. A notable characteristic of Kriging is its
capacity to deliver both forecasts and measurable uncertainty assessments. This is essential in
groundwater level evaluation, because decision-makers necessitate dependable information
for sustainable water resource management. Kriging provides a comprehensive methodology
for delineating the spatial variability of groundwater levels and generating maps that reflect
the confidence in the projections (Oliver and Webster, 1990).

A multitude of studies has evidenced the efficacy of Kriging in global groundwater research.
Nourani, Ejlali, and Alami (2011) utilised Kriging to evaluate groundwater levels in a coastal
aquifer, uncovering intricate spatial patterns and facilitating the identification of probable
over-extraction zones. Nas and Berktay (2010) employed Kriging to examine the spatial
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distribution of groundwater levels in an urban setting, highlighting the technique's capacity to
detect nuanced differences in groundwater dynamics.

Artificial neural network models

Artificial Neural Networks (ANNs) have emerged as a formidable instrument for modelling
intricate hydrogeological systems, drawing inspiration from the architecture and operation of
the human brain, and are computer models proficient in learning and adapting from input-
output interactions (Yegnanarayana, 2009). Artificial Neural Networks (ANNs) have
interconnected nodes, or neurones, arranged in layers, which include an input layer, hidden
layers, and an output layer. The network acquires knowledge by modifying the weights of
connections during a training period, allowing it to identify intricate non-linear correlations
within the data (Abraham, 2005; Zou, Han, and So, 2008).

The typical artificial neural network (ANN) has some limitations. A fundamental shortcoming
of the feed-forward neural network is its lack of memory retention. It is useful in static
classification systems; but, in dynamic classification tasks, where the output relies on
preceding timesteps, it fails to yield a correct response (Staudemeyer and Morris, 2019).
Recurrent Neural Networks (RNNs) were created to address this issue by including signals
from preceding timesteps (Rumelhart, Hinton, and Williams, 1986; Williams and Zipser,
1989; Werbos, 1990; Mozer, 1991). Traditional RNNs has limited memory capacity, resulting
in the vanishing gradient problem. The fundamental architecture of Artificial Neural
Networks (ANN) and Recurrent Neural Networks (RNN) is depicted in Figure 1.
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Figure 1: (A) Basic architecture of an artificial neural network, ANN, (B) Basic architecture of a
recurrent neural network, RNN

Long Short-Term Memory (LSTM)

LSTMs are a kind of RNNs formulated to mitigate the vanishing gradient issue that may
arise in conventional RNNs during the acquisition of long-term dependencies. LSTMs
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utilise memory cells to save information throughout extended sequences (Hochreiter &
Schmidhuber, 1997; Gers, Schmidhuber & Cummins, 2000; Pérez-Ortiz et al., 2003;
Indermiihle ef al., 2011; Yu et al., 2019). Utilising the memory cell design, LSTMs can
judiciously retain or discard information over time, guaranteeing that prior observations
suitably influence future predictions (Hochreiter and Schmidhuber, 1997). This adaptive
memory process is especially beneficial for estimating groundwater levels, as historical
data is essential for identifying seasonality, trends, and other long-term patterns (Graves,
2012). The intrinsic characteristics of LSTM networks render them a dependable and
effective option for precise groundwater level forecasting, thereby enabling informed
decision-making in water resource management and environmental planning (Alshehri et
al., 2020; Sit et al., 2020). Numerous instances exist about LSTM-related challenges
associated with groundwater levels. Nourani, Khodkar, and Gebremichael (2022) employed
LSTM for the uncertainty evaluation of groundwater levels, while Vu et al. (2020) utilised
LSTM to rebuild absent groundwater level data.

This study aimed to evaluate the groundwater level of Savar Upazila using remote sensing
technologies and interpolation techniques, followed by an analysis of historical data to
develop an artificial neural network model for predicting future water level fluctuations.

Materials and Methods
Study area

The designated research area is Savar Upazila, located in Bangladesh, with coordinates
extending from 90°15'5.193"E, 24°1'59.417"N to 90°19'59.534"E, 23°44'27.116"N in the
north-south direction, and from 90°10'55.066"E, 24°0'15.829"N to 90°21'22.909"E,
23°5229.683"N in the east-west direction (Figure 2). Savar, located in the Dhaka district, is
bordered by five upazilas: Dhamrai and Shingair to the west, Keraniganj to the south, Dhaka
and Tongi to the east, and Kaliakoir to the north.

The entire land area of Savar Upazila is 280.12 km? (Bangladesh, 2023). The upazila is
encircled by three rivers: the Bangshal, the Turag, and the Dhaleshwari. Approximately
18,000 hectares of land are utilised for agricultural purposes. Approximately 1,200 small to
major industries are located throughout the region.
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Figure 2: Study area map.

A summary of the methodology is shown in Figure 3.
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Figure 3: Summary of the Methodology.
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Data collection

Groundwater level data, collected weekly from five distinct boreholes in the research area,
were obtained from the Bangladesh Water Development Board (BWDB) for the kriging
analysis and LSTM prediction (Figure 4 and Table 1). Three categories of meteorological data
(precipitation, total surface runoff, and total evaporation) were gathered for the study. All data
were obtained from the timeframe of 2008 to 2017 (Table 2).
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Figure 4: Borehole data collection points.
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Table 1: Details about the boreholes, their positions, and timescale

Id Name of place Position (Coordinate) Timescale
B1 Ashulia 90.33422,23.89747 2012-2017
B2 Baipyle 90.27524,23.94227 2008-2017
B3 Savar 90.25085,23.83452 2008-2017
B4 Dhamrai 90.22476,23.91959 2008-2017
B5 Konabari 90.24064,24.02904 2008-2017

Table 2: Details about the other meteorological data

Type Source Timescale Frequency
Rainfall data CHIRPS Pentad 2008-2017 Daily
Total Evaporation ERAS-Land Daily Aggregated ~ 2008-2017 Daily
Total surface runoff ERAS5-Land Daily Aggregated ~ 2008-2017 Daily

Tools and materials

Quantum GIS 3.22 was utilised for the preparation of remote and geographical data. Kriging
analysis was conducted using ArcGIS 10.8 software. The artificial neural network and data
filtration and sorting were constructed using Python. The Anaconda environment was utilised
for model creation and execution. All these tasks have been executed on a PC equipped with
a 12th generation Core i7 CPU.

Kriging analysis

Groundwater level data were systematically collected from five boreholes located in Savar
Upazila. Data obtained for each borehole encompassed exact geographic coordinates (latitude
and longitude), elevation above mean sea level, and groundwater levels at many intervals, so
establishing a comprehensive dataset for spatial analysis. The data preparation included a
comprehensive evaluation of the borehole coordinates for precision and the standardisation of
measurement units across all data points. The groundwater level data were transformed into a
structured database compatible with ArcGIS, enabling simple integration into the Spatial
Analyst tool for further study. The Spatial Analyst tool in ArcGIS provides an extensive array
of functionalities for conducting sophisticated geospatial studies, including Kriging
interpolation, which was the principal technique utilised to estimate groundwater levels in
unsampled regions of Savar Upazilla (Childs, 2004). The actions executed were as follows:

Spatial Analyst Tool Configuration: The study commenced with the configuration of the
ArcGIS project to integrate the Spatial Analyst extension, thereby facilitating access to
advanced spatial interpolation methods, including the Kriging tool.

Exploratory Spatial Data Analysis (ESDA): An exploratory analysis was performed to
comprehend the spatial attributes and distribution of the gathered groundwater level data. This
stage was essential for discerning geographical patterns, trends, and the extent of spatial
autocorrelation in the dataset, which directly affects the selection of the Kriging model and its
parameters (Haining et al., 1998).
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Selection of Kriging Models: Utilising insights from ESDA, the Kriging tool was employed to
identify the optimal Kriging model (Ordinary Kriging) for the dataset. This selection was
guided by the identified spatial patterns and autocorrelation.

Executing Kriging Interpolation: Employing the Spatial Analyst's Kriging tool, groundwater
levels at unmeasured places were estimated, generating a continuous surface that illustrates
the spatial distribution of groundwater levels throughout Savar Upazila. This interpolation
took into account the variogram model parameters to guarantee that the predictions were
unbiased and exhibited low variance.

LSTM analysis

This project seeks to create a Long Short-Term Memory (LSTM) neural network model for
predicting groundwater levels in Savar upazila, an essential endeavour in water resource
management and environmental planning. The methodology includes data collection,
preprocessing, model architecture design, training, assessment, and result interpretation.

Data Sanitisation

The objective of this section was to eliminate absent or inaccurate data entries to preserve the
integrity of the model's input. The basic dataset of groundwater levels and other data exhibits
varying frequencies, specifically weekly and daily; thus, it was necessary to standardise the
data frequency. The task was executed using Python coding in Jupyter Notebook. The
'Pandas' library was utilised to develop the code. The 'parser' submodule from the 'dateutil’
module was utilised to interpret the date (dateutil, 2019). This code generated a CSV file
encompassing rainfall data, runoff data, and total evaporation data aligned with the dates of
water level data within a singular sheet.

Design of Model Architecture

The dataset utilised in this analysis is derived from the preceding section, encompassing a
defined time range and comprising variables such as precipitation, evaporation, surface
runoff, and groundwater levels. Preprocessing stages encompass data cleansing to address
absent values, outliers, and anomalies. Relevant features affecting groundwater levels are
chosen, and Min-Max scaling is utilised to normalise the features and target variable,
facilitating model convergence. Normalisation is executed with MinMaxScaler to adjust data
within the range of 0 to 1.

The LSTM model architecture is meticulously crafted to incorporate temporal dependencies
in the sequential groundwater level data (Figure 5). This overview presents the LSTM
architecture, highlighting its capacity to preserve information throughout extended durations
and address vanishing gradient issues. The model configuration comprises an input layer that
accommodates feature sequences over a specified time window, three hidden LSTM layers
utilising suitable activation functions (e.g., ReLU and tanh) (Banerjee et al., 2019), and a
sigmoid activation function in the output layer for predicting groundwater levels (Sharma et
al., 2017). Hyperparameters, including the quantity of LSTM units, batch size, learning rate,
and number of epochs, are determined through testing and validation.
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Figure S: Architecture of the LSTM model.

The dataset is partitioned into training and testing sets for model training, maintaining
temporal continuity. The LSTM model is constructed using a suitable loss function, such as
mean squared logarithmic error, and an optimiser, such as Adam (Oppermann, 2022). The
training process entails the iterative modification of model parameters to reduce the loss
function on the training dataset, while simultaneously observing convergence and validation
efficacy.

Model evaluation utilises performance indicators like mean squared error, mean absolute
error, and the coefficient of determination (R”2). Visualisations, such as charts comparing
actual and forecast groundwater levels, are employed to evaluate model accuracy and
generalisation. The results and discussion emphasise the efficacy of the LSTM model, the
obstacles faced during training, and possible pathways for enhancement. Inclusion of
comparative analysis with baseline models or alternative forecasting methodologies may be
warranted if relevant.

Model evaluation entails analysing the training and validation loss curves to verify
convergence and identify overfitting. Line plots are utilised to visualise the comparison
between actual and expected groundwater levels, juxtaposing the model's forecasts with the
true values from the test set.

The execution occurred within a Jupyter Notebook environment utilising the TensorFlow and
Keras frameworks for model construction and pandas for data preprocessing (Gulli & Pal,
2017; Ketkar & Ketkar, 2017; McKinney, 2012; McKinney & Team, 2015; Pang et al., 2020).
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Results
Interpolation

The interpolation of groundwater levels from five boreholes suggests that the region including
Ashulia, Baipyle, and Kaliakoir exhibits the greatest depth of groundwater level, signifying
substantial upwelling of water (Figure 6). Furthermore, these regions are predominantly
industrial zones where the majority of enterprises depend on groundwater for production and
processing activities. This elucidates the cause of the depletion of the GWL. Conversely, the
region adjacent to Dhamrai and Noyar exhibits the minimum depth of groundwater level.
These regions are predominantly agricultural grounds. Despite the substantial extraction of
groundwater from this region, it also contains several recharge zones for groundwater via
wetlands, which are rather scarce in industrial areas.
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Figure 6: Interpolation maps of Savar Upazilla GWL from 2012 to 2017.
GWL Prediction

The main aim of this study was to create a Long Short-Term Memory (LSTM) artificial
neural network (ANN) to forecast groundwater levels using recorded rainfall, runoff, and
evaporation data. We systematically created, trained, and assessed a model in accordance with
the previously outlined methodology. Five distinct operations have been conducted on five
borehole datasets.
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Forecast for Ashulia

The model architecture comprised an input layer for three features (rainfall, surface runoff,
and evaporation), three hidden layers containing 247, 100, and 50 neurones respectively,
utilising ReLU activation for the first hidden layer and tanh activation functions for the
subsequent two layers to capture nonlinear relationships. A concluding dense layer with a
sigmoid activation method generates expected groundwater levels. The Adam optimiser is
selected for model training because of its efficacy in managing sparse gradients and noisy
data. The learning rate is established at 0.001.

The dataset is divided into training and testing subsets (80-20 ratio), and the LSTM model is
trained for 500 epochs with a batch size of 8, incorporating a 10% validation split for
performance evaluation. The training loss was 0.000287 while the validation loss was 0.0070.
Figure 7 illustrates the expected groundwater level in comparison to the actual data.

Ground water level prediction (Ashuliya)
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Figure 7: Groundwater level prediction vs real-life data for Ashuliya.
Forecast for Baipyle

The model architecture included an input layer for three features (rainfall, surface runoft, and
evaporation), three hidden layers with 316, 100, and 50 neurones respectively, employing
ReLU activation for the first hidden layer and tanh activation functions for the subsequent two
layers to capture nonlinear relationships. A concluding dense layer utilising a sigmoid
activation method generates expected groundwater levels. The Adam optimiser is selected for
model training because of its efficacy in managing sparse gradients and noisy data. The
learning rate is established at 0.001.

The dataset is divided into training and testing sets in an 80-20 ratio, and the LSTM model is
trained for 500 epochs with a batch size of 16, employing a 10% validation split for
performance evaluation. The training loss was 0.0089, while the validation loss was 0.0059.
Figure 8 illustrates the projected groundwater level compared to the actual data.

29



Jahangirnagar University Environmental Bulletin Rahman and Islam

Ground water level prediction (Baipyle)
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Figure 8: Groundwater level prediction vs real-life data for Baipyle.

Forecast for Savar

The model architecture included an input layer for three features (rainfall, surface runoft, and
evaporation), three hidden layers with 487, 100, and 50 neurones respectively, utilising ReLU
activation for the first hidden layer and tanh activation functions for the subsequent two layers
to capture nonlinear relationships. A concluding dense layer with a sigmoid activation method
generates expected groundwater levels. The Adam optimiser is selected for model training
because of its efficacy in managing sparse gradients and noisy data. The learning rate is
established at 0.001.

The dataset is divided into training and testing subsets (80-20 ratio), and the LSTM model is
trained for 325 epochs with a batch size of 32, employing a validation split of 10% for
performance evaluation. The training loss was 0.0014, whereas the validation loss was 0.005.
Figure 9 illustrates the expected groundwater level in comparison to the actual data.

Ground water level prediction (Savar)
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Figure 9: Groundwater level prediction vs real-life data for Savar.
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Forecast for Dhamrai

The model architecture comprised an input layer for three features (rainfall, surface runoff,
and evaporation), three hidden layers containing 470, 100, and 50 neurones respectively,
utilising ReLU activation for the first hidden layer and tanh activation functions for the
subsequent two layers to capture nonlinear relationships. A terminal dense layer employing a
sigmoid activation algorithm generates projected groundwater levels. The Adam optimiser is
selected for model training because of its efficacy in managing sparse gradients and noisy
data. The learning rate is established at 0.001.

The dataset is divided into training and testing sets in an 80-20 ratio, and the LSTM model is
trained for 200 epochs with a batch size of 16, employing a 10% validation split for
performance evaluation. The training loss was 0.000303, while the validation loss was 0.0098.
Figure 10 illustrates the expected groundwater level in comparison to the actual data.

Ground water level prediction (Dhamrai)
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Figure 10: Groundwater level prediction vs real-life data for Dhamrai.
Forecast for Kaliakoir

The model architecture included an input layer for three features (rainfall, surface runoft, and
evaporation), three hidden layers with 360, 100, and 50 neurones respectively, utilising ReLU
activation for the first hidden layer and tanh activation functions for the subsequent two layers
to capture nonlinear relationships. A concluding dense layer utilising a sigmoid activation
method generates expected groundwater levels. The Adam optimiser is selected for model
training because of its efficacy in managing sparse gradients and noisy data. The learning rate
is established at 0.01.

The dataset is divided into training and testing sets in an 80-20 ratio, and the LSTM model is
trained for 500 epochs with a batch size of 16, utilising a 10% validation split for performance
evaluation. The training loss was 0.0030, while the validation loss was 0.023. Figure 11
illustrates the expected groundwater level in comparison to the actual data.
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Ground water level prediction (Kaliakoir)
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Figure 11: Groundwater level prediction vs real-life data for Kaliakoir.
Conclusion

The interpolation results obtained by Kriging indicate the water-scarce region of Savar. The
majority of locations within industrial and residential zones exhibit a significant depth of
groundwater level. Conversely, the location of the agricultural areas exhibits a shallow
groundwater level. This finally signifies the reduced permeability of water in metropolitan
regions.

The model attained an average training loss of 0.013 and an average validation loss of 0.010.
This outcome signifies a minimal error rate in the model's forecasts of groundwater levels,
indicating that the model has effectively delineated the intrinsic link among rainfall,
evaporation, and groundwater levels. The comparatively minimal test loss indicates the
effectiveness of the ANN in comprehending and forecasting groundwater level changes with
considerable precision.

A training loss of 1.3% and a validation loss of 1% indicate the model's strong prediction
accuracy. In groundwater level prediction, where accuracy is essential for planning and
management, this outcome underscores the potential of artificial neural networks to provide
significant insights into water resource management strategies. It emphasises the significance
of choosing suitable model topologies, training periods (epochs), and preprocessing methods
to enhance model performance.

Savar has both urban and rural areas, featuring significant portions experiencing swift
industrialisation and urbanisation while retaining a rural identity. The regions of Ashulia,
Jirabo, Baipyle, and Hemayatpur have witnessed considerable industrial expansion, whereas
Savar Pauroshova, Bank Town, Birulia, and other locales have experienced major urban
development. In contrast, areas next to the Dhamrai Upazilla maintain a rural atmosphere.

The diverse terrain of Savar creates a spectrum of water requirements. Groundwater
constitutes the principal water source in this region, underscoring the necessity of monitoring
and assessing fluctuations in groundwater levels.
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